DAZ family proteins exist throughout male germ cell development and transit from nucleus to cytoplasm at meiosis in humans and mice.

نویسندگان

  • R A Reijo
  • D M Dorfman
  • R Slee
  • A A Renshaw
  • K R Loughlin
  • H Cooke
  • D C Page
چکیده

The human DAZ gene family is expressed in germ cells and consists of a cluster of nearly identical DAZ (deleted in azoospermia) genes on the Y chromosome and an autosomal homolog, DAZL (DAZ-like). Only the autosomal gene is found in mice. Y-chromosome deletions that encompass the DAZ genes are a common cause of spermatogenic failure in men, and autosomal homologs of DAZ are essential for testicular germ cell development in mice and Drosophila. Previous studies have reported that mouse DAZL protein is strictly cytoplasmic and that human DAZ protein is restricted to postmeiotic cells. By contrast, we report here that human DAZ and human and mouse DAZL proteins are present in both the nuclei and cytoplasm of fetal gonocytes and in spermatogonial nuclei. The proteins relocate to the cytoplasm during male meiosis. Further observations using human tissues indicate that, unlike DAZ, human DAZL protein persists in spermatids and even spermatozoa. These results, combined with findings in diverse species, suggest that DAZ family proteins function in multiple cellular compartments at multiple points in male germ cell development. They may act during meiosis and much earlier, when spermatogonial stem cell populations are established.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

I-51: The Role of the Transcription FactorGCNF in Germ Cell Differentiation and Reproductionin Mice

The germ cell nuclear factor (GCNF) is a member of the nuclear receptor super family of transcription factors. GCNF expression during gastrulation and neurulation is critical for normal embryogenesis in mice. GCNF represses expression of the POU domain transcription factor Oct4 during mouse post-implantation development in vivo. Oct4 is thus down-regulated during female gonadal development, whe...

متن کامل

NANOS3 function in human germ cell development

Human infertility is common and frequently linked to poor germ cell development. Yet, human germ cell development is poorly understood, at least in part due to the inaccessibility of germ cells to study especially during fetal development. Here, we explored the function of a highly conserved family of genes, the NANOS genes, in the differentiation of human germ cells from human embryonic stem c...

متن کامل

DAZ Family Proteins, Key Players for Germ Cell Development

DAZ family proteins are found almost exclusively in germ cells in distant animal species. Deletion or mutations of their encoding genes usually severely impair either oogenesis or spermatogenesis or both. The family includes Boule (or Boll), Dazl (or Dazla) and DAZ genes. Boule and Dazl are situated on autosomes while DAZ, exclusive of higher primates, is located on the Y chromosome. Deletion o...

متن کامل

INTRODUCTION Mechanisms underlying gametogenesis are complex and apparently divergent among metazoans. The DAZ (Deleted in Azoospermia) gene family provides one of the few lines of evidence that argue for evolutionary conservation of gametogenesis at the molecular level. DAZ family proteins

Mechanisms underlying gametogenesis are complex and apparently divergent among metazoans. The DAZ (Deleted in Azoospermia) gene family provides one of the few lines of evidence that argue for evolutionary conservation of gametogenesis at the molecular level. DAZ family proteins carry two conserved domains, namely the ribonucleoprotein (RNP)-type RNA recognition motif (RRM) and the DAZ motif, an...

متن کامل

A Developmental Stage-Specific Switch from DAZL to BOLL Occurs during Fetal Oogenesis in Humans, but Not Mice

The Deleted in Azoospermia gene family encodes three germ cell-specific RNA-binding proteins (DAZ, DAZL and BOLL) that are essential for gametogenesis in diverse species. Targeted disruption of Boll in mice causes male-specific spermiogenic defects, but females are apparently fertile. Overexpression of human BOLL promotes the derivation of germ cell-like cells from genetically female (XX), but ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biology of reproduction

دوره 63 5  شماره 

صفحات  -

تاریخ انتشار 2000